Two-Part Models and Selection Models for Corner Solution Outcomes

2017 FARS Midyear Meeting Charlotte, NC January 25, 2017

Jeff Wooldridge Department of Economics Michigan State University

- 1. Preliminaries
- 2. Review of the Tobit Model
- 3. Motivation for Two-Part Models
- 4. A General Formulation
- 5. Truncated Normal Hurdle Model
- 6. Lognormal Hurdle Model
- 7. Applications of Hurdle Models
- 8. Exponential Type II Tobit Model

1. Preliminaries

- Important to know whether a problem is properly studied in a two-part (hurdle) framework or a self-selection framework.
- If it makes sense to use a Tobit model for y then there is no self-selection problem.
- The practical issue is whether a Tobit model is sufficient. Is a two-part model is warranted?

- **Example**: y annual charitable contributions. This is a *corner solution* response, where zero represents a true outcome.
- If a Tobit model is not sufficient, a two-part model might be needed.
- But modeling y is not properly viewed as a self-selection problem.

- Accounting Example: y is the dollar value of equity incentive contracts.
- There is only one outcome, and it might be zero.
- Core and Guay (1999): "We assume that the firm simultaneously chooses to make a grant of equity incentives, and the magnitude of the incentive grant conditional on making a grant."

- In order to be in a self-selection framework, one must be able to define counterfactual outcomes in the two states.
- Example: Let w denote participation in a job training program, where some workers participate and others do not.
- y_0 is earnings in the absense of job training, y_1 is earnings with job training.
- For each person, i, we only observe

$$y_i = (1 - w_i)y_{i0} + w_i y_{i1}$$

along with w_i .

- Accounting Example: w is one if a German firm adopts international disclosure rules, zero if not.
- y_0 is the cost of capital if the firm does not; y_1 is the cost of capital if the firm does.
- These counterfactuals make sense. (Leuz and Verrecchia, Journal of Accounting Research, 2000).
- Another Example: w is one if a hospital is for profit, zero if not. y is a cost measure. Again, y_0 and y_1 are conceptually well defined.

- Charitable Contributions Example: It makes no sense to ask: "How much would a family contribute to charity if it does not contribute to charity?"
- We may want to use a two-part model for charitable contributions, but that is much different from having two potential outcomes.
- Confusion arises because a common two-part model is called a "selection" model.
- See FARS 2016 lecture for IV and control function approaches to self-selection.

2. Review of the Tobit Model

• $y \ge 0$ is a random variable continuous except at zero:

$$P(y=0) > 0$$

- The most we can know about y is its conditional distribution, D(y|x).
- Often reported in applications are partial effects on
 - $(i) P(y > 0 | \mathbf{x})$
 - (ii) $E(y|\mathbf{x}, y > 0)$ (the "conditional" expectation)
 - (iii) $E(y|\mathbf{x})$ (the "unconditional" expectation)

• Not crazy to start with a linear approximation:

$$E(y|\mathbf{x}) \approx \mathbf{x}\mathbf{\gamma} = \gamma_1 + \gamma_2 x_2 + \cdots + \gamma_K x_K.$$

- Note: This is a *linear model* that we *estimate* by OLS.
- We do not use the phrase "I estimated an OLS model."
- The $\hat{\gamma}_j$ might be reasonable approximations to the average partial effects.

- Tobit can give a better functional form for partial effects over a broad range of x_j values.
- y follows a Type I Tobit Model if

$$y = \max(0, \mathbf{x}\boldsymbol{\beta} + u)$$
$$u|x \sim \text{Normal}(0, \sigma^2).$$

• There is no censoring problem! A zero is a zero!

• Quantities of Interest for Tobit:

(i) $P(y > 0|\mathbf{x}) = \Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)$. If x_j is continuous, we can take a derivative:

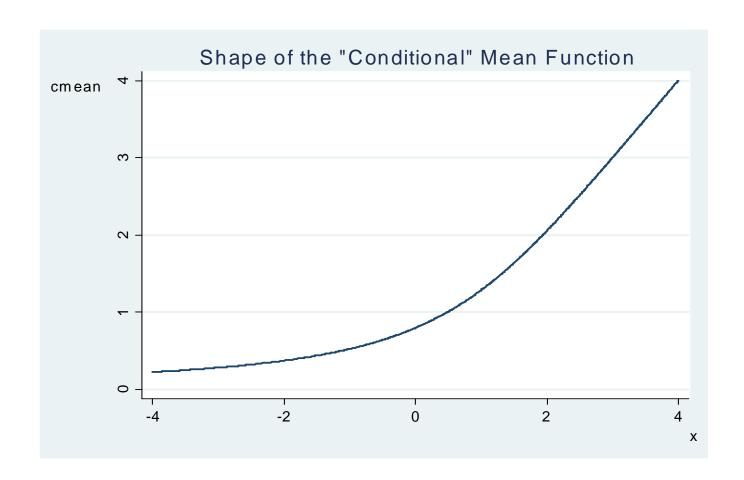
$$\frac{\partial P(y>0|x)}{\partial x_j}=(\beta_j/\sigma)\phi(\mathbf{x}\boldsymbol{\beta}/\sigma),$$

so the partial effect depends on β , σ , and all of the elements of x.

(ii) The "conditional" expectation (conditional on y > 0):

$$E(y|\mathbf{x}, y > 0) = x\beta + \sigma \frac{\phi(\mathbf{x}\boldsymbol{\beta}/\sigma)}{\Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)} = \mathbf{x}\boldsymbol{\beta} + \sigma\lambda(\mathbf{x}\boldsymbol{\beta}/\sigma)$$

where $\lambda(z) = \phi(z)/\Phi(z)$ is the "inverse Mills ratio" (IMR).

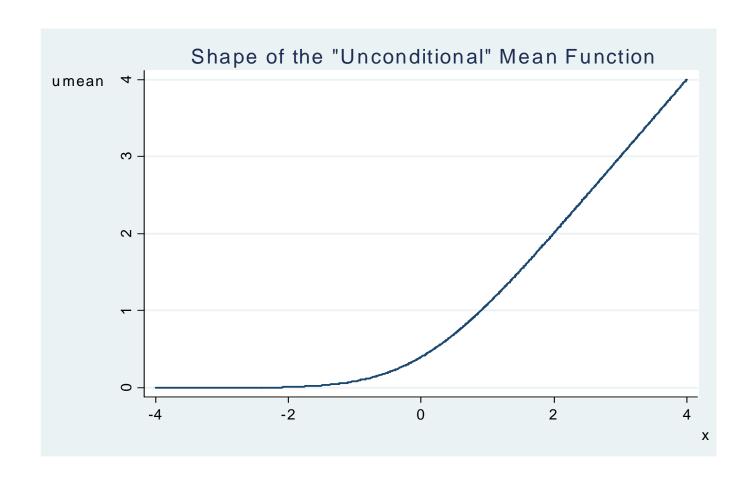


(iii) The "unconditional" expectation:

$$E(y|\mathbf{x}) = P(y > 0|\mathbf{x})E(y|\mathbf{x}, y > 0) = \Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)\mathbf{x}\boldsymbol{\beta} + \sigma\phi(\mathbf{x}\boldsymbol{\beta}/\sigma).$$

$$\frac{\partial E(y|\mathbf{x})}{\partial x_j} = \beta_j \Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)$$

• Note: σ is not "ancillary" for estimating partial effects on for means of y.



• We can evaluate the partial effects at interesting values of *x* (means, medians, quantiles) but often it is useful to have a single measure, the average partial effect (APE):

$$\widehat{APE}_j = \left[N^{-1} \sum_{i=1}^N \Phi(\mathbf{x}_i \hat{\boldsymbol{\beta}} / \hat{\sigma}) \right] \hat{\beta}_j.$$

- Can compare \widehat{APE}_j) with the corresponding OLS coefficient, $\hat{\gamma}_j$.
- Can embellish Tobit in several ways, but it is inherently a "one-part" model.

. use charity

. des gift lgift resplast weekslast mailsyear propresp avggift lavggift

	storage	display	value	
variable name	type	format	label	variable label
gift	int	 %9.0g		amount of gift, Dutch guilders
lgift	float	%9.0g		<pre>log(gift); missing if gift = 0</pre>
resplast	byte	%9.0g		<pre>=1 if responded to most recent mailing</pre>
weekslast	float	%9.0g		number of weeks since last response
mailsyear	float	%9.0g		number of mailings per year
propresp	float	%9.0g		response rate to mailings
avggift	float	%9.0g		average of past gifts
lavggift	float	%9.0g		log(avggift)

. sum gift lgift resplast weekslast mailsyear propresp avggift lavggift

Variable	Obs	Mean	Std. Dev.	Min	Max
gift	4,268	7.44447	15.06256	0	250
lgift	1,707	2.652349	.6998901	.6931472	5.521461
resplast	4,268	.3348172	.4719818	0	1
weekslast	4,268	59.0482	44.32374	13.14286	195
mailsyear	4,268	2.049555	. 66758	. 25	3.5
propresp	 4,268	. 4843592	. 2533932	.090909	1
avggift	4,268	18.24284	78.70286	1	5005
lavggift	4,268	2.589046	.6699614	0	8.518192

. reg gift resplast weekslast mailsyear propresp lavggift, robust

Linear regression				Number of obs		=	4,268
				F(5, 426	2)	=	118.81
				$\mathtt{Prob} > \mathtt{F}$	ı	=	0.0000
				R-square	d	=	0.2335
				Root MSE	i i	=	13.195
		Robust					
gift	Coef.	Std. Err.	t	P > t	[95%	Conf.	Interval]
resplast	.8323287	.6714167	1.24	0.215	483	 9976	2.148655
weekslast	017745	.0056432	-3.14	0.002	028	8086	0066813
mailsyear	.3447685	.3962544	0.87	0.384	432	0965	1.121633
propresp	13.20904	1.196681	11.04	0.000	10.8	6292	15.55516
lavggift	8.87639	.7987143	11.11	0.000	7.31	0494	10.44229
_cons	-21.87232	1.918434	-11.40	0.000	-25.6	3345	-18.11119

. tobit gift i.resplast weekslast mailsyear propresp lavggift, 11(0)

TODIC regressi	OII			Mariner	OL ODS	_	4,200
				LR chi2	(5)	=	1110.76
				Prob >	chi2	=	0.0000
Log likelihood	Pseudo	=	0.0574				
gift	Coef.	 Std. Err.	 t	 P> t	 [95% Coi		
911c		sta. EII.		P> C 			
1.resplast	.6063508	1.223619	0.50	0.620	-1.7925	8 3	.005282
weekslast	1277379	.0160405	-7.96	0.000	159185	7	0962901
mailsyear	1.54373	.6828978	2.26	0.024	. 204894	3 2	.882565
propresp	34.6707	2.4138	14.36	0.000	29.938	4 3	9.40301
lavggift	13.10639	.6775479	19.34	0.000	11.7780	5 1	4.43474
_cons	-55.06357	2.947971	-18.68	0.000	-60.8431	3 -4	9.28401
/sigma	24.33349	. 4597725			23.432	1 2 	5.23488

Number of obs = 4 268

Tobit regression

^{2,561} left-censored observations at gift <= 0

^{1,707} uncensored observations

⁰ right-censored observations

. margins, dydx(*) predict(ystar(0,.))

Average marginal effects

Number of obs = 4,268

Model VCE : OIM

Expression : E(gift*|gift>0), predict(ystar(0,.))

dy/dx w.r.t. : 1.resplast weekslast mailsyear propresp lavggift

į	dy/dx	Std. Err.	Z	$\mathbf{P} \!> \! \mid \mathbf{z} \mid$	[95% Conf.	Interval]
1.resplast	. 2346497	. 4746847	0.49	0.621	6957153	1.165015
weekslast	0493058	.0062147	-7.93	0.000	0614864	0371251
mailsyear	. 5958669	.2634876	2.26	0.024	.0794406	1.112293
propresp	13.3826	.9253948	14.46	0.000	11.56886	15.19634
lavggift	5.058959	. 2714734	18.64	0.000	4.526881	5.591037

Note: dy/dx for factor levels is the discrete change from the base level.

```
. margins, dydx(mailsyear) at(mailsyear = (1 2 3)) predict(ystar(0,.)) vsquish
                                         Number of obs = 4,268
Average marginal effects
Model VCE : OIM
Expression : E(gift*|gift>0), predict(ystar(0,.))
dy/dx w.r.t. : mailsyear
1. at : mailsyear =
                                     1
2._at : mailsyear =
3._at : mailsyear =
                    Delta-method
                 dy/dx Std. Err. z P>|z| [95% Conf. Interval]
mailsyear
       _at
             .562269 .2338624 2.40 0.016 .1039072 1.020631
.5932174 .2611319 2.27 0.023 .0814082 1.105027
        1
        2
              .6246454 .2890459 2.16 0.031 .0581258
        3
                                                            1.191165
```

. probit respond i.resplast weekslast mailsyear propresp lavggift

Probit regression				Number	Number of obs		4,268
				LR chi2	(5)	=	989.39
				Prob >	chi2	=	0.0000
Log likelihood	d = -2377.6399	9		Pseudo	R2	=	0.1722
respond	Coef.	Std. Err.	Z	$\mathbf{P} \gt \mathbf{z} $	[95%	Conf.	<pre>Interval]</pre>
	+						
1.resplast	.1255117	.0572287	2.19	0.028	.013	3455	. 2376779
weekslast	004517	.0007112	-6.35	0.000	005	9109	0031231
mailsyear	.1408493	.0322642	4.37	0.000	.077	6125	.204086
propresp	1.853517	.1143114	16.21	0.000	1.62	9471	2.077563
lavggift	.0475477	.0318031	1.50	0.135	014	7851	.1098806
_cons	-1.391889	.134267	-10.37	0.000	-1.65	5047	-1.12873

- . qui probit respond i.resplast weekslast mailsyear propresp lavggift
- . gen g_mailsyear = _b[mailsyear]
- . predict xg, xb

3. Motivation for Two-Part Models

- Break outcome into two parts:
- 1. The participation decision: y = 0 versus y > 0.
- 2. The amount decision (how much?)
- In a Tobit model, the partial effects of x_j on

$$P(y > 0|\mathbf{x})$$
 and $E(y|\mathbf{x}, y > 0)$

must have the same sign.

• For continuous variables x_j and x_h ,

$$\frac{\partial P(y > 0|\mathbf{x})/\partial x_j}{\partial P(y > 0|\mathbf{x})/\partial x_h} = \frac{\beta_j}{\beta_h} = \frac{\partial E(y|\mathbf{x}, y > 0)/\partial x_j}{\partial E(y|\mathbf{x}, y > 0)/\partial x_h}$$

• If x_j has twice the effect of x_h on the participation decision, x_j must have twice the effect on the amount decision, too.

- Two-part models allow different mechanisms for the participation and amount decisions.
- Often, the economic argument centers around fixed costs from participating in an activity.
- For example, there are fixed costs of entering the labor force.
- Perhaps there are fixed psychological costs of buying life insurance.

4. A General Formulation

- *s* is a binary variable that determines whether *y* is zero or strictly positive.
- $w^* > 0$ is a continuous random variable.
- Assume y is generated as

$$y = s \cdot w^*$$
.

- Other than s being binary and w^* being continuous, there is another important difference.
- We observe s because s = 1 if and only if y > 0:

$$s = 1[y > 0].$$

- w^* is only observed when s = 1, in which case $w^* = y$.
- Seems we would want to allow s and w^* to be dependent, but it is not so easy.

• A useful assumption is that s and w^* are independent conditional on explanatory variables \mathbf{x} :

$$D(w^*|s,\mathbf{x}) = D(w^*|\mathbf{x}).$$

- Typically underlies two-part models or hurdle models.
- One implication is that the expected value of y conditional on x and s is easy to obtain:

$$E(y|\mathbf{x},s) = s \cdot E(w^*|\mathbf{x},s) = s \cdot E(w^*|\mathbf{x}).$$

• It is enough to have conditional mean independence:

$$E(w^*|\mathbf{x},s) = E(w^*|\mathbf{x}).$$

• When s = 1, we can write the "conditional" expectation as

$$E(y|\mathbf{x}, y > 0) = E(w^*|\mathbf{x}).$$

• The so-called "unconditional" expectation is

$$E(y|\mathbf{x}) = E(s|\mathbf{x})E(w^*|\mathbf{x}) = P(s = 1|\mathbf{x})E(w^*|\mathbf{x}).$$

- A different class of models explicitly allows correlation between the participation decision, s, and the latent amount, w^* , even after conditioning on \mathbf{x} .
- Unfortunately, these models have been dubbed **selection models**.
- The name has led to confusion about what data is observed for corner solution responses.

- We only observe one variable, y (along with x).
- In true sample selection environments, the outcome of the selection variable (*s* in the current notation) does not logically restrict the outcome of the response variable.
- Here, s = 0 rules out y > 0.
- We are trying to get flexible models for $D(y|\mathbf{x})$ that can be given behavioral content.
- There is no missing data problem!

5. Truncated Normal Hurdle Model

- Cragg (1971) proposed a two-part extension of the Type I Tobit model.
- With $y = s \cdot w^*$, $D(s, w^*|\mathbf{x}) = D(s|\mathbf{x})D(w^*|\mathbf{x})$.
- The binary variable s follows a probit model:

$$P(s=1|\mathbf{x})=\Phi(\mathbf{x}\mathbf{\gamma}),$$

which is the same as

$$s = 1[\mathbf{x}\mathbf{\gamma} + v > 0]$$

$$v|\mathbf{x} \sim Normal(0,1)$$

- w^* has a **truncated normal distribution** with parameters that vary freely from those in the probit.
- We can write

$$w^* = \mathbf{x}\boldsymbol{\beta} + u,$$

where $D(u|\mathbf{x})$ has a truncated normal distribution with lower truncation point $-\mathbf{x}\boldsymbol{\beta}$.

xx graph?

• Because $y = w^*$ when y > 0, we can write the truncated normal assumption in terms of the density of y given y > 0 (and \mathbf{x}):

$$f(y|\mathbf{x}, y > 0) = [\Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)]^{-1}\phi[(y - \mathbf{x}\boldsymbol{\beta})/\sigma]/\sigma, \quad y > 0,$$

where the term $[\Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)]^{-1}$ ensures that the density integrates to unity over y > 0.

• We combine this with

$$P(y > 0|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{y}).$$

- Called the **truncated normal hurdle** (**TNH**) **model**.
- Nice feature of the TNH model: It reduces to the Type I Tobit model when $\gamma = \beta/\sigma$ (*K* restrictions).
- The log-likelihood function for a random draw *i* is

$$\ell_i(\boldsymbol{\theta}) = 1[y_i = 0]\log[1 - \Phi(\mathbf{x}_i\boldsymbol{\gamma})] + 1[y_i > 0]\log[\Phi(\mathbf{x}_i\boldsymbol{\gamma})]$$
$$+ 1[y_i > 0]\{-\log[\Phi(\mathbf{x}_i\boldsymbol{\beta}/\sigma)] + \log\{\phi[(y_i - \mathbf{x}_i\boldsymbol{\beta})/\sigma]\} - \log(\sigma)\}.$$

- Because the parameters γ , β , and σ are allowed to freely vary, the MLE for γ , $\hat{\gamma}$, is simply the probit estimator from probit of $s_i = 1[y_i > 0]$ on \mathbf{x}_i .
- The MLEs of β and σ (or β and σ^2) use the log likelihood

$$\sum_{i=1}^{N} 1[y_i > 0] \{-\log[\Phi(\mathbf{x}_i \boldsymbol{\beta}/\sigma)] + \log(\phi[(y_i - \mathbf{x}_i \boldsymbol{\beta})/\sigma]) - \log(\sigma)\}.$$

• The latter estimation problem is sometimes called **truncated normal regression**.

• The conditional expectation has the same form as the Type I Tobit:

$$E(y|\mathbf{x}, y > 0) = \mathbf{x}\boldsymbol{\beta} + \sigma\lambda(\mathbf{x}\boldsymbol{\beta}/\sigma).$$

- In particular, the effect of x_j has the same sign as β_j (for continuous or discrete changes).
- In the TNH model, γ_j/γ_h (ratio of PEs on participation probabilities) can be completely different from β_j/β_h (ratio of PEs on $E(y|\mathbf{x}, y > 0)$).

• The unconditional expectation for the Cragg TNH model is

$$E(y|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{\gamma})[\mathbf{x}\mathbf{\beta} + \sigma\lambda(\mathbf{x}\mathbf{\beta}/\sigma)].$$

• PE for a continuous x_j :

$$\frac{\partial E(y|\mathbf{x})}{\partial x_j} = \gamma_j \phi(\mathbf{x}\mathbf{y})[\mathbf{x}\mathbf{\beta} + \sigma\lambda(\mathbf{x}\mathbf{\beta}/\sigma)] + \beta_j \Phi(\mathbf{x}\mathbf{y})\theta(\mathbf{x}\mathbf{\beta}/\sigma)$$
$$\theta(z) = 1 - \lambda(z)[z + \lambda(z)].$$

• The PE sign is unambiguous if γ_j , β_j have the same sign.

• The estimated average partial (marginal) effect is

$$\widehat{APE}_{j} = N^{-1} \sum_{i=1}^{N} \left\{ \hat{\gamma}_{j} \phi(\mathbf{x}_{i} \hat{\boldsymbol{\gamma}}) [\mathbf{x}_{i} \hat{\boldsymbol{\beta}} + \sigma \lambda(\mathbf{x}_{i} \hat{\boldsymbol{\beta}} / \hat{\sigma})] + \hat{\beta}_{j} \Phi(\mathbf{x}_{i} \hat{\boldsymbol{\gamma}}) \theta(\mathbf{x}_{i} \hat{\boldsymbol{\beta}} / \hat{\sigma}) \right\}$$

- This \widehat{APE}_j can be compared with linear, Tobit.
- Might want to set a key element of **x** to different values, average out the rest.

Note that

$$\log[E(y|\mathbf{x})] = \log[\Phi(\mathbf{x}\boldsymbol{\gamma})] + \log[E(y|\mathbf{x}, y > 0)].$$

• The semi-elasticity with respect to x_j is 100 times

$$\gamma_j \lambda(\mathbf{x}\mathbf{y}) + \beta_j \theta(\mathbf{x}\mathbf{\beta}/\sigma)/[\mathbf{x}\mathbf{\beta} + \sigma\lambda(\mathbf{x}\mathbf{\beta}/\sigma)].$$

- If $x_j = \log(z_j)$, then the above expression is the elasticity of $E(y|\mathbf{x})$ with respect to z_j .
- Bootstrapping is convienent for obtaining valid standard errors for APEs.

- Can get goodness-of-fit measures, as with Tobit.
- \bullet For example, the squared correlation between y_i and

$$\hat{E}(y_i|\mathbf{x}_i) = \Phi(\mathbf{x}_i\hat{\boldsymbol{\gamma}}) \left[\mathbf{x}_i \hat{\boldsymbol{\beta}} + \hat{\sigma} \lambda(\mathbf{x}_i \hat{\boldsymbol{\beta}}/\hat{\sigma}) \right].$$

• Or, use a sum-of-squared residuals form:

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} [y_{i} - \hat{E}(y_{i}|\mathbf{x}_{i})]^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$

6. Lognormal Hurdle Model

- Cragg (1971) also suggested the lognormal distribution conditional on a positive outcome.
- We can express y as

$$y = s \cdot w^* = 1[\mathbf{x}\mathbf{\gamma} + v > 0] \exp(\mathbf{x}\mathbf{\beta} + u),$$

where (u, v) is independent of **x** with a bivariate normal distribution.

• As in the TNH model, u and v are independent.

• w^* has a lognormal distribution because

$$w^* = \exp(\mathbf{x}\boldsymbol{\beta} + u)$$
$$u|\mathbf{x} \sim Normal(0, \sigma^2)$$

• Called the lognormal hurdle (LH) model.

• The expected value conditional on y > 0 is

$$E(y|\mathbf{x}, y > 0) = E(w^*|\mathbf{x}, s = 1) = E(w^*|\mathbf{x}) = \exp(\mathbf{x}\boldsymbol{\beta} + \sigma^2/2).$$

- The semi-elasticity of $E(y|\mathbf{x}, y > 0)$ with respect to x_j is $100\beta_j$.
- If $x_j = \log(z_j)$, β_j is the elasticity of $E(y|\mathbf{x}, y > 0)$ with respect to z_j .
- The "unconditional" expectation is

$$E(y|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{\gamma}) \exp(\mathbf{x}\mathbf{\beta} + \sigma^2/2).$$

• The PE for continuous x_j :

$$\gamma_j \phi(\mathbf{x} \mathbf{\gamma}) \exp(\mathbf{x} \mathbf{\beta} + \sigma^2/2) + \beta_j \Phi(\mathbf{x} \mathbf{\gamma}) \exp(\mathbf{x} \mathbf{\beta} + \sigma^2/2).$$

• Can easily estimate the average of these:

$$N^{-1} \sum_{i=1}^{N} \left[\hat{\gamma}_{j} \phi(\mathbf{x}_{i} \hat{\boldsymbol{\gamma}}) \exp(\mathbf{x}_{i} \hat{\boldsymbol{\beta}} + \hat{\sigma}^{2}/2) + \hat{\beta}_{j} \Phi(\mathbf{x}_{i} \hat{\boldsymbol{\gamma}}) \exp(\mathbf{x}_{i} \hat{\boldsymbol{\beta}} + \hat{\sigma}^{2}/2) \right].$$

• This \widehat{APE}_j can be compared with linear, Tobit, TNH, and so on.

• The semi-elasticity of $E(y|\mathbf{x})$ with respect to x_j is obtained by differentiating

$$\log[\Phi(\mathbf{x}\mathbf{y})] + \mathbf{x}\mathbf{\beta} + \sigma^2/2,$$

which gives

$$\gamma_j\lambda(\mathbf{x}\mathbf{\gamma})+\beta_j,$$

where $\lambda(\cdot)$ is the inverse Mills ratio.

- Multiply by 100 to turn into a percent.
- If $x_j = \log(z_j)$, $\gamma_j \lambda(\mathbf{x} \mathbf{\gamma}) + \beta_j$ is the elasticity of $E(y|\mathbf{x})$ with respect to z_j .

- Estimation of the parameters is straightforward.
- The log-likelihood function for a random draw *i*:

$$\ell_i(\boldsymbol{\theta}) = 1[y_i = 0]\log[1 - \Phi(\mathbf{x}_i\boldsymbol{\gamma})] + 1[y_i > 0]\log[\Phi(\mathbf{x}_i\boldsymbol{\gamma})]$$

$$+1[y_i>0]\{\log(\phi[(\log(y_i)-\mathbf{x}_i\boldsymbol{\beta})/\sigma])-\log(\sigma)-\log(y_i)\}.$$

- As with the truncated normal hurdle model, estimation of the MLE estimates can be obtained in two steps:
- 1. Probit of s_i on \mathbf{x}_i to estimate $\boldsymbol{\gamma}$.
- 2. OLS regression of $\log(y_i)$ on \mathbf{x}_i for observations with $y_i > 0$ to estimate $\boldsymbol{\beta}$ and σ^2 .
- The MLE of σ^2 can be used or the usual degrees-of-freedom adjusted estimator can be used; both are consistent.

- In computing the log likelihood to compare fit across models, must include the terms $log(y_i)$.
- The second-part models can be formally compared using Vuong's (1988, *Econometrica*) model selection statistic.
- The null is that both models are misspecified but fit equally well.
- The models are nonnested.
- Obtain the usual t statistic from the regression

$$\ell_{i1}(\hat{\theta}_1) - \ell_{i2}(\hat{\theta}_2) \text{ on } 1, i = 1,...,N$$

7. Applications of Hurdle Models

- . use charity
- * Lognormal Hurdle:
- . reg lgift resplast weekslast mailsyear propresp lavggift

Source	SS	df	MS	Number of obs	=	1,707
+				F (5, 1701)	=	1317.26
Model	664.151099	5	132.83022	$\mathtt{Prob} > \mathtt{F}$	=	0.0000
Residual	171.526333	1,701	.100838526	R-squared	=	0.7947
+				Adj R-squared	=	0.7941
Total	835.677432	1,706	.489846091	Root MSE	=	. 31755

lgift	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
resplast	0090969	.0209414	-0.43	0.664	0501706	.0319768
weekslast	.0002882	.0003359	0.86	0.391	0003706	.000947
mailsyear	.0076318	.0122335	0.62	0.533	0163625	.0316261
propresp	.0474344	.0404902	1.17	0.242	0319814	.1268501
lavggift	.9161706	.0115061	79.62	0.000	.893603	.9387383
_cons	. 2042159	.0516533	3.95	0.000	.1029053	. 3055266

```
. gen b mailsyear = b[mailsyear]
. predict xb1
(option xb assumed; fitted values)
. predict u1, resid
(2,561 missing values generated)
. di sqrt(e(df_r)/e(N))*e(rmse)
.31699225
. gen sigma_1 = sqrt(e(df_r)/e(N))*e(rmse)
. gen sigmasq_l = sigma_l^2
. gen llf_l = log(normalden(u1/sigma_l)) - log(sigma_l) - lgift
(2,561 missing values generated)
. sum llf l
   Variable Obs Mean Std. Dev.
                                                      {	t Min}
                                                                 Max
      11f_1 | 1,707 -2.922409 4.202741 -167.9574 -.6035189
. * Compute log likelihood for the positive part
. gen ln llf = r(N) *r(mean)
```

. di ln_llf -4988.5527

. sum pe_mailsyear

Variable	Obs	Mean	Std. Dev.	Min	Max
pe_mailsyear	4,268	.8847765	2.224905	.0360896	136.7779

. * Truncated Normal Hurdle

.

. truncreg gift resplast weekslast mailsyear propresp lavggift, 11(0) (note: 2,561 obs. truncated)

Truncated regression

Limit: lower = 0 Number of obs = 1,707 upper = +inf Wald chi2(5) = 964.45 Log likelihood = -6069.9612 Prob > chi2 = 0.0000

gift | Coef. Std. Err. z p > |z|[95% Conf. Interval] resplast | -2.605616 1.681491 -1.55 0.121 -5.901277 .6900461 weekslast -.0506036 .0280123 -1.81 0.071 -.1055068 .0042995 mailsyear | -.9740504 .9199597 -1.06 0.290 -2.777138 .8290375 3.239026 0.93 0.352 -3.335312 9.361437 propresp 3.013063 1.274278 31.01 0.000 37.01741 42.01249 lavggift 39.51495 -97.34161 5.583595 -17.43 0.000 -108.2853 -86.39796 cons 33.75 .5022369 0.000 /sigma 16.95007 15.9657 17.93443

```
. gen sigma_t = _b[/sigma]
. predict xb2, xb
. gen u2 = gift - xb2
. gen llf_t = log(normalden(u2/sigma_t)) ///
               - log(sigma_t) - log(normal(xb2/sigma_t))
>
. replace llf_t = . if respond == 0
(2,561 real changes made, 2,561 to missing)
. sum llf_t
   Variable Obs
                                                     Min
                              Mean Std. Dev.
                                                               Max
      llf t | 1,707 -3.555923 2.711403 -88.88192 -1.810982
. * Compute log likelihood for the positive part
. gen tn_llf = r(N) *r(mean)
. di tn_llf
-6069.9614
```

. * Compute APE for mailsyear:. * Compute APE with respect to mailsyear

. gen xb2_sigma_t = xb2/sigma_t

- . gen imr_tn = normalden(xb2_sigma_t)/normal(xb2_sigma_t)
- . gen theta = $1 imr_tn*(xb2_sigma_t + imr_tn)$

. drop pe_mailsyear

. sum pe_mailsyear

Variable	Obs	Mean	Std. Dev.	Min	Max
pe_mailsyear	4,268	.6264226	.5893324	.0598148	8.80879

. * APE for Tobit was .596, for LNH .885.

. * Compute Vuong Statistic:

. gen diff = llf_l - llf_t
(2,561 missing values generated)

. reg diff

Source	ss	df	MS		r of obs		1,707
Model Residual	 0 11109.9727	0 1,706	6.5122935	F(0, Prob R-squ	> F	= =	0.00
residuai	+		0.5122955	_	ared -squared		0.0000
Total	11109.9727	1,706	6.5122935	Root	MSE	=	2.5519
diff	Coef.	Std. Err.	t	P > t	[95% (Conf.	Interval]
_cons	.633514	.0617661	10.26	0.000	. 5123	687	.7546593

^{*} Heavily favors lognormal model

- . * Labor Supply Example
- . use mroz
- . tab inlf

=1 if in lab frce, 1975	Freq.	Percent	Cum.
0	325	43.16	43.16
1	428	56.84	100.00
Total	753	100.00	

- . * Compute Vuong test for truncated normal versus lognormal.
- . gen lhours = log(hours)
 (325 missing values generated)

. reg lhours nwifeinc educ exper expersq age kidslt6 kidsge6

Source	SS	df	MS		Number of obs	= 428 = 11.90
Model Residual	66.3633428 334.513835		.48047755 796461511		Prob > F R-squared Adj R-squared	= 0.0000 = 0.1655
Total	400.877178	427	. 93882243		Root MSE	= .89245
lhours	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
nwifeinc	0019676	.004443	 -0. 44	0.658	0107021	.0067668
educ	0385626	. 0202098	3 -1.91	0.057	0782876	.0011624
exper	.073237	.017900	4.09	0.000	.0380514	.1084225
expersq	001233	.0005378	3 -2.29	0.022	0022902	0001759
age	0236706	.007248	3 -3.27	0.001	0379175	0094237
kidslt6	585202	.118606	5 -4.93	0.000	8183386	3520654
kidsge6	0694175	.037335	5 -1.86	0.064	1428053	.0039703
_cons	7.896267	. 426078	9 18.53	0.000	7.058755	8.73378

[.] predict xb1

(option xb assumed; fitted values)

(325 missing values generated)

[.] predict u1, resid

```
. * Obtain the MLE of sigma:
```

```
. di sqrt(e(df_r)/e(N))*e(rmse)
.88406695
```

- . * It is important to make sure we compute the LLF for the lognormal
- . * distribution, which means subtracting log(hours):

. sum llf_l

Variable	Obs	Mean	Std. Dev.	Min	Max
11f_1	428	-8.162676	.8157579	-12.81951	-6.2637

- . di r(N)*r(mean)
- -3493.6254

. * So the log likelihood for the positive part is about -3,493.63.

. truncreg hours nwifeinc educ exper expersq age kidslt6 kidsge6, 11(0) (note: 325 obs. truncated)

Truncated regression

Limit:	lower =	0	Number of obs =	428
	upper =	+inf	Wald chi2(7) =	59.05
Log like	lihood =	-3390.6476	Prob > chi2 =	0.0000

hours	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
nwifeinc	.15344	5.164279	0.03	0.976	-9.968361	10.27524
educ	-29.85254	22.83935	-1.31	0.191	-74.61684	14.91176
exper	72.62273	21.23628	3.42	0.001	31.00039	114.2451
expersq	9439967	.6090283	-1.55	0.121	-2.13767	.2496769
age	-27.44381	8.293458	-3.31	0.001	-43.69869	-11.18893
kidslt6	-484.7109	153.7881	-3.15	0.002	-786.13	-183.2918
kidsge6	-102.6574	43.54347	-2.36	0.018	-188.0011	-17.31379
_cons	2123.516	483.2649	4.39	0.000	1176.334	3070.697
/ /sigma	850.766	43.80097	19.42	0.000	764.9177	936.6143

[.] di _b[/sigma] 850.766

. gen sigma_t = _b[/sigma]

. di r(N)*r(mean)

-3390.6476

. gen diff = llf_t - llf_l
(325 missing values generated)

. reg diff

Sour	ce	SS	df	MS	}		Number	of obs	=	428
	+						F (0,	427)	=	0.00
Mod	el	0	0		•		Prob >	F	=	•
Residu	al 203	.970312	427	. 477682	229		R-squar	ed	=	0.0000
	+						Adj R-s	quared	=	0.0000
Tot	al 203	.970312	427	. 477682	229		Root MS	E	=	.69115
					. – – – – –			. – – – – –		
di	ff	Coef.	Std. 1	Err.	t	P > t	[95%	Conf.	Int	erval]
	+									
_co	ns .2	406023	.03340	078	7.20	0.000	.174	9381	. 3	3062665

[.] * Here the truncated normal fits substantially better, and we can strongly

^{. *} reject the lognormal.

• We could drop the full distributional assumption and assume

$$P(y > 0|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{y})$$
$$E(y|\mathbf{x}, y > 0) = \exp(\mathbf{x}\mathbf{\beta}).$$

• Then

$$E(y|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{\gamma}) \exp(\mathbf{x}\mathbf{\beta}).$$

- γ is still estimated by probit.
- β can be estimated by Poisson or Exponential QMLE using $y_i > 0$.
- Computation of semi-elasticities and elasticities follows from

$$\log[\hat{E}(y|\mathbf{x})] = \log[\Phi(\mathbf{x}\hat{\boldsymbol{\gamma}})] + \mathbf{x}\hat{\boldsymbol{\beta}}.$$

For example,

$$\frac{\partial \log[\hat{E}(y|\mathbf{x})]}{\partial x_i} = \hat{\gamma}_j \lambda(\mathbf{x}\hat{\boldsymbol{\gamma}}) + \hat{\beta}_j.$$

8. Exponential Type II Tobit Model

- Can modify the lognormal hurdle model to allow conditional correlation between s and w^* .
- Call the resulting model the *Exponential Type II Tobit* (ET2T) model.
- Traditionally, the Type II Tobit (T2T) model has been applied to missing data problems.
- Here, we use an exponential version of the T2T model as a corner solution model.

• We can still write y as

$$y = 1[\mathbf{x}\mathbf{\gamma} + v > 0] \exp(\mathbf{x}\mathbf{\beta} + u).$$

• Because Var(v) = 1, $Var(u) = \sigma^2$,

$$Cov(u, v) = \rho \sigma = Corr(u, v) \cdot \sigma.$$

- Compared with the lognormal hurdle model, we have added a correlation parameter, ρ .
- Obtaining the pdf is a bit tricky.

• After tedious calcluations, the log likelihood for a random draw *i*:

$$\ell_{i}(\boldsymbol{\theta}) = 1[y_{i} = 0]\log[1 - \Phi(\mathbf{x}_{i}\boldsymbol{\gamma})]$$

$$+ 1[y_{i} > 0]\{\log[\Phi([\mathbf{x}_{i}\boldsymbol{\gamma} + (\rho/\sigma)(\log(y_{i}) - \mathbf{x}_{i}\boldsymbol{\beta})](1 - \rho^{2})^{-1/2})$$

$$+ \log[\phi((\log(y_{i}) - \mathbf{x}_{i}\boldsymbol{\beta})/\sigma)] - \log(\sigma) - \log(y_{i})\}.$$

- Practical Tip: To use sample selection software for corner solution outcomes, define $log(y_i)$ as the response variable.
- The data are "missing" on $log(y_i)$ when $y_i = 0$.

- For a true missing data problem, the last term in the log likelihood, $log(y_i)$, is not included.
- Inclusion of $log(y_i)$ clearly does not affect the estimation problem, but it does affect the value of the log-likelihood function, which is needed to compare across different models.

Computing Partial Effects

• Partial effects can be hard to even sign. For the conditional expectation of log(y),

$$\frac{\partial E[\log(y)|\mathbf{x},y>0]}{\partial x_j} = \beta_j + \eta \lambda^{(1)}(\mathbf{x}\boldsymbol{\gamma})\gamma_j$$

where $\lambda^{(1)}(\cdot)$ < 0 is the first derivative of the IMR.

• The sign of $\eta = \rho \sigma$ is the same as $\rho = Corr(u, v)$.

• The partial effects on the unconditional expectation of *y* are

$$\frac{\partial E(y|\mathbf{x})}{\partial x_j} = \gamma_j \phi(\mathbf{x} \mathbf{\gamma} + \eta) \exp(\mathbf{x} \mathbf{\beta} + \sigma^2/2) + \beta_j \Phi(\mathbf{x} \mathbf{\gamma} + \eta) \exp(\mathbf{x} \mathbf{\beta} + \sigma^2/2).$$

- Very similar to LNH, which sets $\eta = 0 = \rho$.
- The semi-elasticity is

$$\frac{\partial \log E(y|\mathbf{x})}{\partial x_i} = \gamma_j \lambda(\mathbf{x}\mathbf{y} + \eta) + \beta_j.$$

Identification without an Exclusion Restriction

- Technically, the ET2T model contains the lognormal hurdle model as a special case ($\rho = 0$).
- But the ET2T model with unknown ρ can be poorly identified if the set of explanatory variables that appears in

$$w^* = \exp(\mathbf{x}\mathbf{\beta} + u)$$

is the same as the variables in

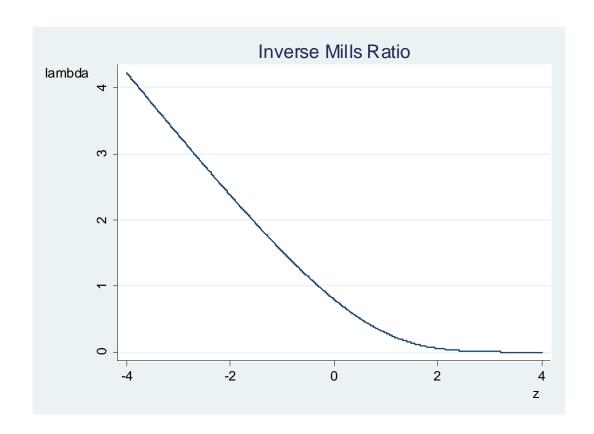
$$s = 1[\mathbf{x}\mathbf{y} + v > 0].$$

- Various ways to see the potential problem.
- First, it can be shown that

$$E[\log(y)|\mathbf{x}, y > 0] = \mathbf{x}\boldsymbol{\beta} + \eta \lambda(\mathbf{x}\boldsymbol{\gamma}),$$

where $\eta = \rho \sigma$.

- γ is identified by probit, so we can treat it as known.
- $E[\log(y)|\mathbf{x}, y > 0]$ nominally identifies $\boldsymbol{\beta}$ and $\boldsymbol{\eta}$ only because $\lambda(\cdot)$ is a nonlinear function.
- But identification is tenuous because $\lambda(\cdot)$ is roughly linear over much of its range.



• In the ET2T the unconditional expectation is

$$E(y|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{\gamma} + \eta) \exp(\mathbf{x}\mathbf{\beta} + \sigma^2/2),$$

which is exactly of the same form as in the LH model except for the presence of $\eta = \rho \sigma$.

- Because **x** always should include a constant, η is not separately identified by $E(y|\mathbf{x})$ (niether is $\sigma^2/2$).
- If we based identification entirely on $E(y|\mathbf{x})$, there would be no difference between the lognormal hurdle model and the ET2T model.

- Technically, the parameters are identified without an exclusion restriction, so we can try to estimate the full model with the same vector **x** appearing in the participation and amount equations.
- In practice, it rarely works well. For example, it can give unrealistic estimates of ρ (such as close to 1 or -1).
- One should view estimating the ET2T without an exclusion restriction with extreme skepticism as in any case where identification is due to a nonlinearity.

. use charity

```
. heckman lgift resplast weekslast mailsyear propresp lavggift, ///
        select(respond = resplast weekslast mailsyear propresp lavggift)
                                                         = 4,268
Heckman selection model
                                          Number of obs
                                         Censored obs = 2,561
(regression model with sample selection)
                                          Uncensored obs =
                                                                1,707
                                          Wald chi2(5) = 5474.35
Log likelihood = -2802.1
                                         Prob > chi2 = 0.0000
                 Coef. Std. Err. z \rightarrow z [95% Conf. Interval]
lgift
   resplast -.0219504
                        .0229974 - 0.95 0.340
                                                  -.0670245 .0231238
                                                 .0009276 .0023266
-.041911 .0105709
             .0016271 .0003569 4.56 0.000
-.01567 .0133885 -1.17 0.242
  weekslast
  mailsyear
  propresp -.2927994 .0481844 -6.08 0.000 -.387239 -.1983597
   lavggift .913751 .012709 71.90 0.000 .8888419 .9386601
             .6619247 .0606737 10.91
                                          0.000
                                                .5430064
                                                            .780843
      cons
```

respond						
resplast	.1265888	.0564515	2.24	0.025	.0159459	.2372316
weekslast	0041173	.0007034	-5.85	0.000	005496	0027386
mailsyear	.1243341	.0318364	3.91	0.000	.0619358	.1867323
propresp	1.80489	.1129476	15.98	0.000	1.583517	2.026263
lavggift	.0851231	.0315661	2.70	0.007	.0232547	.1469915
_cons	-1.468231	.1329752	-11.04	0.000	-1.728858	-1.207604
/athrho	-1.023908	.0577399	-17.73	0.000	-1.137076	9107401
/lnsigma	9382428	.0265996	-35.27	0.000	9903771	8861085
rho	771 4 536	.0233765			8134273	7214873
sigma	.3913148	.0104088			.3714366	. 4122569
lambda	3018813	.0161214			3334785	270284
LR test of inc	lep. eqns. (rl	no = 0):	chi2(1) =	73.07	Prob > chi	.2 = 0.0000

. sum lgift

Variable	Obs	Mean	Std. Dev.	Min	Max
lgift	 1,707	2.652349	.6998901	.6931472	5.521461

^{. *} Compute log likelihood for "selection" model, both parts

[.] di e(ll) - r(N)*r(mean)

^{-7329.6597}

. * Do Heckman two-step:

```
. heckman lgift resplast weekslast mailsyear propresp lavggift, ///
    select(respond = resplast weekslast mailsyear propresp lavggift) twostep
Heckman selection model -- two-step estimates
                                       Number of obs
                                                     = 4,268
                                       Censored obs = 2,561
(regression model with sample selection)
                                       Uncensored obs =
                                                            1,707
                                       Wald chi2(5) = 4730.55
                                       Prob > chi2 = 0.0000
                       Std. Err. z P>|z| [95% Conf. Interval]
                Coef.
lgift
   resplast -.0305503
                       .0273419
                               -1.12 0.264
                                               -.0841394
                                                          .0230388
  weekslast
             .001681 .0008859
                                1.90 0.058
                                              -.0000554
                                                         .0034175
  mailsyear | -.0205983 .0218647 -0.94 0.346 -.0634523 .0222558
  propresp -.3738332 .2487012 -1.50 0.133 -.8612787 .1136123
  lavggift .9039068 .0153245 58.98 0.000 .8738714 .9339423
            .8126557
                       .356659 2.28
                                       0.023 .1136169
     cons
                                                          1.511694
```

respond						
resplast	.1255118	.0572286	2.19	0.028	.0133457	. 2376779
weekslast	004517	.0007112	-6.35	0.000	0059109	0031231
mailsyear	.1408493	.0322642	4.37	0.000	.0776126	. 204086
propresp	1.853517	.1143113	16.21	0.000	1.629471	2.077563
lavggift	.0475477	.031803	1.50	0.135	014785	.1098805
_cons	-1.391889	.1342668	-10.37	0.000	-1.655047	-1.128731
mills	+ 					
lambda	3770068	.2165736	-1.74	0.082	8014833	.0474697
rho	-0.87 4 63					
sigma	.43104751					

. * "By hand":

. reg lgift resplast weekslast mailsyear propresp lavggift imr if respond

Source	SS	đf	MS		per of obs	=	1,707
			110 544604	, ,	1700)	=	1099.62
Model	664.467637	6	110.744606	o Pror) > F	=	0.0000
Residual	171.209796	1,700	.100711644	4 R-sq	guared	=	0.7951
+				- Adj	R-squared	=	0.7944
Total	835.677432	1,706	.489846091		MSE	=	.31735
lgift	Coef.	 Std. Err.	 t	P> t	 [95% Co	nf.	Interval]
resplast	0305503	.0241749	 -1.26	0.207	07796	 6	.0168655
weekslast	.001681	.0008544	1.97	0.049	5.34e-0		.0033567
!							
mailsyear	0205983	.0200756	-1.03	0.305	059973	7	.0187772
propresp	3738335	.2410423	-1.55	0.121	846604	2	.0989373
lavggift	.9039068	.0134193	67.36	0.000	.877586	8	. 9302269
imr	377007	.2126556	-1.77	0.076	794101	3	.0400873
_cons	.812656	. 3470589	2.34	0.019	.131948	5	1.493363

```
. qui probit respond resplast weekslast mailsyear propresp lavggift
. gen probit_llf = e(ll)
. gen tnh_llf = probit_llf + tn_llf
. di tnh_llf
-8447.6016
* LLF for Tobit is -9115.3322.
. gen lnh_llf = probit_llf + ln_llf
. di lnh_llf
-7366.1924
```

- . use mroz
- . gen lhours = log(hours)
 (325 missing values generated)

11-al-man aslaat	Mumbon	of oba		753			
Heckman selection model					of obs	=	
(regression mo	odel with samm	ple selection	n)	Censore	d obs	=	325
				Uncenso	red obs	=	428
				Wald ch	i2 (7)	=	35.50
Log likelihood	d = -938.8208			Prob >	chi2	=	0.0000
	Coef.	Std. Err.	Z	$\mathbf{P} \gt \mid \mathbf{z} \mid$	[95%	Conf.	<pre>Interval]</pre>
11	+ ı						
lhours							
nwifeinc	.0066597	.0050147	1.33	0.184	0031	.689	.0164882
educ	1193085	.0242235	-4.93	0.000	1667	7858	0718313
exper	0334099	.0204429	-1.63	0.102	0734	1773	.0066574
expersq	.0006032	.0006178	0.98	0.329	0006	5077	.0018141
age	.0142754	.0084906	1.68	0.093	0023	3659	.0309167
kidslt6	. 2080079	.1338148	1.55	0.120	0542	2643	.4702801
kidsge6	0920299	.0433138	-2.12	0.034	1769	235	0071364
_cons	8.670736	. 498793	17.38	0.000	7.69	312	9.648352

select						
nwifeinc	0096823	.0043273	-2.24	0.025	0181637	001201
educ	.119528	.0217542	5.49	0.000	.0768906	.1621654
exper	.0826696	.0170277	4.86	0.000	.049296	.1160433
expersq	0012896	.0005369	-2.40	0.016	002342	0002372
age	0330806	.0075921	-4.36	0.000	0479609	0182003
kidslt6	5040406	.1074788	-4.69	0.000	7146951	293386
kidsge6	.0698201	.0387332	1.80	0.071	0060955	.1457357
_cons	3656166	. 4476569	-0.82	0.414	-1.243008	. 5117748
/athrho	-2.131542	.174212	-12.24	0.000	-2.472991	-1.790093
/lnsigma	.1895611	.0419657	4.52	0.000	.1073099	. 2718123
rho	+ 9722333	.0095403			9858766	9457704
sigma	1.208719	.0507247			1.113279	1.312341
lambda	-1.175157	.0560391			-1.284991	-1.065322
LR test of inc	dep. eqns. (r	ho = 0):	chi2(1) =	34.10	Prob > chi	L2 = 0.0000

^{. *} rho = -.972 is not plausible.

- . di e(11) -938.8208
- . sum lhours

- . di e(11) r(N)*r(mean)
- -3877.8798
- . * This value of the LLF is well below that of the truncated normal
- . * hurdle model, which is -3,791.95 = -401.302 3390.648.
- . * (And the TNH has one fewer parameter.)
- . * Of course, -3,877.88 is above that for the lognormal hurdle model
- . * (-3,894.93) because the ET2T model nests the LNH model.
- . * But with such a silly estimate of rho, the ET2T estimates should
- . * not be trusted.

Estimation with an Exclusion Restriction

- The ET2T is much more convincing when the covariates determining the amount are a strict subset of those affecting participation.
- The model can be expressed as

$$y = 1[\mathbf{x}\mathbf{\gamma} + v \ge 0] \cdot \exp(\mathbf{x}_1\mathbf{\beta}_1 + u),$$

where \mathbf{x} and \mathbf{x}_1 contain unity but \mathbf{x}_1 is a strict subset of \mathbf{x} .

- If we write $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$ and $\mathbf{\gamma}' = (\mathbf{\gamma}_1', \mathbf{\gamma}_2')$ then we are assuming $\mathbf{\gamma}_2 \neq \mathbf{0}$, so that at least one element of \mathbf{x}_2 affects participation.
- Given at least one exclusion restriction, we can see from

$$E[\log(y)|\mathbf{x}, y > 0] = \mathbf{x}_1 \mathbf{\beta}_1 + \eta \lambda(\mathbf{x}\mathbf{\gamma})$$

that β_1 and η much are better identified because $\lambda(x\gamma)$ is not an exact function of x_1 .

• There is never a need to excluse variables from the participation equation. Doing so can cause inconsistency.

- Exclusion restrictions can be hard to come by.
- Need something affecting the fixed cost of participating but not affecting the amount of y.
- What would affect a firm's decision to grant of equity incentives that would arguably not affect the amount?
- What would affect a family's decision to contribute to charity but not the amount?

- Given an exclusion restriction, can use Vuong's test to compare the ET2T model and the lognormal hurdle model (no exclusion restriction but $\rho = 0$).
- With one exclusion restriction, the models have the same number of parameters.

Using y in the Selection Model

- It is a mistake to use y rather than log(y) in the linear amount equation.
- We would then write

$$y = 1[\mathbf{x}\mathbf{\gamma} + v > 0] \cdot (\mathbf{x}_1\mathbf{\beta}_1 + u)$$

where (u, v) is bivariate normal *independent* of **x**.

• Then

$$\mathbf{x}_1 \mathbf{\beta}_1 + u < 0$$
$$\mathbf{x} \mathbf{\gamma} + v > 0$$

can both occur, which means y < 0.

• When $y \ge 0$ with a corner at zero, it only makes sense to apply the Type Two Tobit model to log(y).

- . * Apply the two-step Heckman estimator to gift rather than lgift.
- . * Gives many negative predictions conditional on gift > 0!
- . reg gift resplast weekslast mailsyear propresp lavggift imr if respond

Source	SS	df	MS		per of obs	=	1,707 338.05
Model Residual	333613.342 279617.474	6 1,700	55602.2236 164.480867	Prob	o > F guared	=	0.0000 0.5440
residuai				-	R-squared	=	0.5424
Total	613230.815	1,706	359.455343	Root	MSE	=	12.825
gift	Coef.	Std. Err.	t	P > t	[95% Con	f.	Interval]
resplast	-1.194293	.9769745	-1.22	0.222	-3.110492	2	.721906
weekslast	0192372	.0345268	-0.56	0.577	0869567	7	.0484823
mailsyear	-1.364588	.8113086	-1.68	0.093	-2.955856	5	.2266811
propresp	6846713	9.741169	-0.07	0.944	-19.79061	_	18.42127
lavggift	20.7177	.5423092	38.20	0.000	19.65404	Ŀ	21.78136
imr	-1.150011	8.593988	-0.13	0.894	-18.00592	2	15.7059
_cons	-29.91137	14.02558	-2.13	0.033	-57.4206	5	-2.402144

[.] predict gift_h
(option xb assumed; fitted values)

[.] count if $gift_h < 0$ 439